metabelian, supersoluble, monomial
Aliases: C32⋊C18, C33.1C6, C3⋊S3⋊C9, (C3×C9)⋊1S3, C3.2(S3×C9), C32⋊C9⋊1C2, C3.5(C32⋊C6), C32.12(C3×S3), (C3×C3⋊S3).C3, SmallGroup(162,4)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C33 — C32⋊C9 — C32⋊C18 |
C32 — C32⋊C18 |
Generators and relations for C32⋊C18
G = < a,b,c | a3=b3=c18=1, ab=ba, cac-1=a-1b-1, cbc-1=b-1 >
Character table of C32⋊C18
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 9L | 18A | 18B | 18C | 18D | 18E | 18F | |
size | 1 | 9 | 1 | 1 | 2 | 2 | 2 | 6 | 6 | 6 | 9 | 9 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ5 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ7 | 1 | -1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ6 | ζ65 | ζ95 | ζ98 | ζ92 | ζ9 | ζ94 | ζ97 | ζ98 | ζ94 | ζ92 | ζ9 | ζ95 | ζ97 | -ζ92 | -ζ9 | -ζ94 | -ζ95 | -ζ98 | -ζ97 | linear of order 18 |
ρ8 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ97 | ζ94 | ζ9 | ζ95 | ζ92 | ζ98 | ζ94 | ζ92 | ζ9 | ζ95 | ζ97 | ζ98 | ζ9 | ζ95 | ζ92 | ζ97 | ζ94 | ζ98 | linear of order 9 |
ρ9 | 1 | -1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ65 | ζ6 | ζ97 | ζ94 | ζ9 | ζ95 | ζ92 | ζ98 | ζ94 | ζ92 | ζ9 | ζ95 | ζ97 | ζ98 | -ζ9 | -ζ95 | -ζ92 | -ζ97 | -ζ94 | -ζ98 | linear of order 18 |
ρ10 | 1 | -1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ6 | ζ65 | ζ92 | ζ95 | ζ98 | ζ94 | ζ97 | ζ9 | ζ95 | ζ97 | ζ98 | ζ94 | ζ92 | ζ9 | -ζ98 | -ζ94 | -ζ97 | -ζ92 | -ζ95 | -ζ9 | linear of order 18 |
ρ11 | 1 | -1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ65 | ζ6 | ζ94 | ζ9 | ζ97 | ζ98 | ζ95 | ζ92 | ζ9 | ζ95 | ζ97 | ζ98 | ζ94 | ζ92 | -ζ97 | -ζ98 | -ζ95 | -ζ94 | -ζ9 | -ζ92 | linear of order 18 |
ρ12 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ95 | ζ98 | ζ92 | ζ9 | ζ94 | ζ97 | ζ98 | ζ94 | ζ92 | ζ9 | ζ95 | ζ97 | ζ92 | ζ9 | ζ94 | ζ95 | ζ98 | ζ97 | linear of order 9 |
ρ13 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ94 | ζ9 | ζ97 | ζ98 | ζ95 | ζ92 | ζ9 | ζ95 | ζ97 | ζ98 | ζ94 | ζ92 | ζ97 | ζ98 | ζ95 | ζ94 | ζ9 | ζ92 | linear of order 9 |
ρ14 | 1 | -1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ65 | ζ6 | ζ9 | ζ97 | ζ94 | ζ92 | ζ98 | ζ95 | ζ97 | ζ98 | ζ94 | ζ92 | ζ9 | ζ95 | -ζ94 | -ζ92 | -ζ98 | -ζ9 | -ζ97 | -ζ95 | linear of order 18 |
ρ15 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ98 | ζ92 | ζ95 | ζ97 | ζ9 | ζ94 | ζ92 | ζ9 | ζ95 | ζ97 | ζ98 | ζ94 | ζ95 | ζ97 | ζ9 | ζ98 | ζ92 | ζ94 | linear of order 9 |
ρ16 | 1 | -1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ6 | ζ65 | ζ98 | ζ92 | ζ95 | ζ97 | ζ9 | ζ94 | ζ92 | ζ9 | ζ95 | ζ97 | ζ98 | ζ94 | -ζ95 | -ζ97 | -ζ9 | -ζ98 | -ζ92 | -ζ94 | linear of order 18 |
ρ17 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ92 | ζ95 | ζ98 | ζ94 | ζ97 | ζ9 | ζ95 | ζ97 | ζ98 | ζ94 | ζ92 | ζ9 | ζ98 | ζ94 | ζ97 | ζ92 | ζ95 | ζ9 | linear of order 9 |
ρ18 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ9 | ζ97 | ζ94 | ζ92 | ζ98 | ζ95 | ζ97 | ζ98 | ζ94 | ζ92 | ζ9 | ζ95 | ζ94 | ζ92 | ζ98 | ζ9 | ζ97 | ζ95 | linear of order 9 |
ρ19 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ20 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1-√-3 | -1-√-3 | -1-√-3 | -1+√-3 | -1+√-3 | -1+√-3 | ζ6 | ζ65 | ζ6 | ζ65 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ21 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1+√-3 | -1+√-3 | -1+√-3 | -1-√-3 | -1-√-3 | -1-√-3 | ζ65 | ζ6 | ζ65 | ζ6 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ22 | 2 | 0 | -1+√-3 | -1-√-3 | 2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | -1 | 0 | 0 | 2ζ9 | 2ζ97 | 2ζ94 | 2ζ92 | 2ζ98 | 2ζ95 | -ζ97 | -ζ98 | -ζ94 | -ζ92 | -ζ9 | -ζ95 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from S3×C9 |
ρ23 | 2 | 0 | -1-√-3 | -1+√-3 | 2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | -1 | 0 | 0 | 2ζ98 | 2ζ92 | 2ζ95 | 2ζ97 | 2ζ9 | 2ζ94 | -ζ92 | -ζ9 | -ζ95 | -ζ97 | -ζ98 | -ζ94 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from S3×C9 |
ρ24 | 2 | 0 | -1+√-3 | -1-√-3 | 2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | -1 | 0 | 0 | 2ζ97 | 2ζ94 | 2ζ9 | 2ζ95 | 2ζ92 | 2ζ98 | -ζ94 | -ζ92 | -ζ9 | -ζ95 | -ζ97 | -ζ98 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from S3×C9 |
ρ25 | 2 | 0 | -1+√-3 | -1-√-3 | 2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | -1 | 0 | 0 | 2ζ94 | 2ζ9 | 2ζ97 | 2ζ98 | 2ζ95 | 2ζ92 | -ζ9 | -ζ95 | -ζ97 | -ζ98 | -ζ94 | -ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from S3×C9 |
ρ26 | 2 | 0 | -1-√-3 | -1+√-3 | 2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | -1 | 0 | 0 | 2ζ95 | 2ζ98 | 2ζ92 | 2ζ9 | 2ζ94 | 2ζ97 | -ζ98 | -ζ94 | -ζ92 | -ζ9 | -ζ95 | -ζ97 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from S3×C9 |
ρ27 | 2 | 0 | -1-√-3 | -1+√-3 | 2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | -1 | 0 | 0 | 2ζ92 | 2ζ95 | 2ζ98 | 2ζ94 | 2ζ97 | 2ζ9 | -ζ95 | -ζ97 | -ζ98 | -ζ94 | -ζ92 | -ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from S3×C9 |
ρ28 | 6 | 0 | 6 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ29 | 6 | 0 | -3-3√-3 | -3+3√-3 | -3 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 6 | 0 | -3+3√-3 | -3-3√-3 | -3 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(2 8 14)(3 9 15)(5 17 11)(6 18 12)
(1 13 7)(2 8 14)(3 15 9)(4 10 16)(5 17 11)(6 12 18)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)
G:=sub<Sym(18)| (2,8,14)(3,9,15)(5,17,11)(6,18,12), (1,13,7)(2,8,14)(3,15,9)(4,10,16)(5,17,11)(6,12,18), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)>;
G:=Group( (2,8,14)(3,9,15)(5,17,11)(6,18,12), (1,13,7)(2,8,14)(3,15,9)(4,10,16)(5,17,11)(6,12,18), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18) );
G=PermutationGroup([[(2,8,14),(3,9,15),(5,17,11),(6,18,12)], [(1,13,7),(2,8,14),(3,15,9),(4,10,16),(5,17,11),(6,12,18)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)]])
G:=TransitiveGroup(18,82);
(1 16 25)(3 27 18)(4 10 19)(6 21 12)(7 22 13)(9 15 24)
(1 25 16)(2 17 26)(3 27 18)(4 19 10)(5 11 20)(6 21 12)(7 13 22)(8 23 14)(9 15 24)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)
G:=sub<Sym(27)| (1,16,25)(3,27,18)(4,10,19)(6,21,12)(7,22,13)(9,15,24), (1,25,16)(2,17,26)(3,27,18)(4,19,10)(5,11,20)(6,21,12)(7,13,22)(8,23,14)(9,15,24), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)>;
G:=Group( (1,16,25)(3,27,18)(4,10,19)(6,21,12)(7,22,13)(9,15,24), (1,25,16)(2,17,26)(3,27,18)(4,19,10)(5,11,20)(6,21,12)(7,13,22)(8,23,14)(9,15,24), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27) );
G=PermutationGroup([[(1,16,25),(3,27,18),(4,10,19),(6,21,12),(7,22,13),(9,15,24)], [(1,25,16),(2,17,26),(3,27,18),(4,19,10),(5,11,20),(6,21,12),(7,13,22),(8,23,14),(9,15,24)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)]])
G:=TransitiveGroup(27,47);
C32⋊C18 is a maximal subgroup of
C32⋊D18 C32⋊C9.S3 C32⋊C9⋊S3 (C3×He3).C6 C32⋊C9.C6 C33.(C3×S3) C32⋊2D9.C3 C33⋊1C18 (C3×C9)⋊C18 C9⋊S3⋊3C9 C9×C32⋊C6 C34.C6 C9⋊He3⋊C2 C33⋊C18 C92⋊3S3 (C32×C9)⋊8S3 C92⋊6S3 C92⋊5S3
C32⋊C18 is a maximal quotient of
C32⋊C36 C9⋊S3⋊C9 C32⋊C54 C33⋊1C18 (C3×C9)⋊C18 C9⋊S3⋊3C9 He3⋊C18 He3.C18 He3.2C18 C33⋊C18
Matrix representation of C32⋊C18 ►in GL6(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
12 | 0 | 7 | 12 | 1 | 7 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
8 | 18 | 12 | 0 | 0 | 11 |
18 | 12 | 8 | 18 | 12 | 9 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 |
18 | 12 | 0 | 18 | 12 | 1 |
G:=sub<GL(6,GF(19))| [1,0,0,0,0,12,0,7,0,0,0,0,0,0,11,0,0,7,0,0,0,1,0,12,0,0,0,0,11,1,0,0,0,0,0,7],[7,0,0,0,0,8,0,7,0,0,0,18,0,0,7,0,0,12,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[18,0,0,0,7,18,12,0,0,0,0,12,8,0,0,11,0,0,18,7,0,0,0,18,12,0,7,0,0,12,9,0,0,0,0,1] >;
C32⋊C18 in GAP, Magma, Sage, TeX
C_3^2\rtimes C_{18}
% in TeX
G:=Group("C3^2:C18");
// GroupNames label
G:=SmallGroup(162,4);
// by ID
G=gap.SmallGroup(162,4);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-3,36,723,728,2704]);
// Polycyclic
G:=Group<a,b,c|a^3=b^3=c^18=1,a*b=b*a,c*a*c^-1=a^-1*b^-1,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C32⋊C18 in TeX
Character table of C32⋊C18 in TeX